Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition

نویسندگان

  • Ram Bilas Pachori
  • Varun Bajaj
چکیده

Epilepsy is one of the most common neurological disorders characterized by transient and unexpected electrical disturbance of the brain. The electroencephalogram (EEG) is an invaluable measurement for the purpose of assessing brain activities, containing information relating to the different physiological states of the brain. It is a very effective tool for understanding the complex dynamical behavior of the brain. This paper presents the application of empirical mode decomposition (EMD) for analysis of EEG signals. The EMD decomposes a EEG signal into a finite set of bandlimited signals termed intrinsic mode functions (IMFs). The Hilbert transformation of IMFs provides analytic signal representation of IMFs. The area measured from the trace of the analytic IMFs, which have circular form in the complex plane, has been used as a feature in order to discriminate normal EEG signals from the epileptic seizure EEG signals. It has been shown that the area measure of the IMFs has given good discrimination performance. Simulation results illustrate the effectiveness of the proposed method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P81: Detection of Epileptic Seizures Using EEG Signal Processing

Epilepsy is the most common brain diseases that cause many problems in the daily life of the patient. In most attempts to automatic detection, the attack used an EEG. In this paper, The complete data set consists of five sets recorded from normal and epileptic patients. Each set containing 100 single-channel EEG segments. Here we used first and last sets (A and E). Set A consisted of segments r...

متن کامل

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

Epileptic seizure detection based on The Limited Penetrable visibility graph algorithm and graph properties

Introduction: Epileptic seizure detection is a key step for both researchers and epilepsy specialists for epilepsy assessment due to the non-stationariness and chaos in the electroencephalogram (EEG) signals. Current research is directed toward the development of an efficient method for epilepsy or seizure detection based the limited penetrable visibility graph (LPVG) algorith...

متن کامل

Epileptic Seizure Detection in EEG signals Using TQWT and SVM-GOA Classifier

Background: Epilepsy is a Brain disorder disease that affects people's quality of life. If it is diagnosed at an early stage, it will not be spread. Electroencephalography (EEG) signals are used to diagnose epileptic seizures. However, this screening system cannot diagnose epileptic seizure states precisely. Nevertheless, with the help of computer-aided diagnosis systems (CADS), neurologists ca...

متن کامل

A Time-Frequency approach for EEG signal segmentation

The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer methods and programs in biomedicine

دوره 104 3  شماره 

صفحات  -

تاریخ انتشار 2011